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Introduction 

Environment Australia is tasked with managing the networks of Commonwealth Marine Reserves 

(CMRs) and Key Ecological Features (KEFs).  Effective management requires first establishing a 

baseline of what key biota are located in a given CMR or KEF, and then regularly monitoring their 

status to ensure all is well.  A particular challenge is posed by CMRs and KEFs located in the remote 

and relatively poorly known N and NW regions, where it is logistically impossible to survey every 

area in detail.  One way to ‘fill in the gaps’ between field observations is to build spatial predictive 

habitat models.  For the marine environment, such modelling involves collecting and integrating 

spatial datasets to build realistic representations of both the topography and composition of the 

seafloor and major biotic groups (Brown et al 2011, Holmes et al 2008). Such models are widely 

useful to scientists and managers, for example to:  

 determine the spatial heterogeneity of the benthic environment and key classes of 

organisms,  

 evaluate the physical and biological controls on individual and joint habitat distributions,  

 discover relationships among habitats and various species of interest, and  

 investigate how habitats and organisms respond to disturbance from human activities.   

The Oceanic Shoals CMR is a classic example of a case where spatial predictive benthic models can 

be useful.  Multiple field campaigns have collected high resolution survey data in seven study areas 

within or near the Oceanic Shoals, but these studies collectively cover only a small fraction of the 

total area of the CMR.  While this fine-scale data is valuable, managers need a map showing where 

benthic habitat types exist across the entire Oceanic Shoals CMR.  We aimed to address this need by 

producing a benthic habitat map for the CMR using spatial predictive modelling, along with a guide 

to its limitations and how it should be used appropriately. 

 

Methods  

Benthic spatial predictive habitat models aim to map the spatial distribution of types of bottom-

dwelling organisms across an area of interest in as much spatial detail as robustly possible.  In 

producing such models for NESP, we aim to ensure they are: 

 Ecologically meaningful on relevant spatial and temporal scales, 

 Sufficiently accurate for the intended use, and 

 Communicated to stakeholders clearly so that their limits and likely errors are clearly 

understood. 

We build such models following the basic process outlined below (Figure 1).   



 

Figure 1.  Diagram illustrating the process of producing a spatial benthic prediction model. 

 

Developing predictors 

Developing environmental surrogates for the existence and abundance of classes of benthic 

organisms (step 2) is possible with high resolution bathymetric data (Brown et al 2011).  Where such 

data do not exist in an area of interest, they can be developed from multi-beam sonar data via 

hydro-acoustic surveys (Holmes et al 2008, Lehmann et al. 2002- step 1 on Figure 1).  For the 

Oceanic Shoals, hydro-acoustic data has been collected at seven locations (Figure 2).   

 

Figure 2.  Very high resolution multi-beam sonar coverage of the Oceanic Shoals CMR.  The CMR is outlined in black.  High 

resolution multibeam data coverage is shown in orange.  Data courtesy of Geoscience Australia. 
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We used this combined with Geoscience Australia’s 250 metre bathymetry coverage of Australian 

waters to develop the following potential predictors of benthic habitat at 250 m resolution (Figure 1, 

step 2): 

 Depth 

 Aspect 

 Overall curvature 

 Profile curvature 

 Plan curvature 

 Depth range (5, 10, 25, 50 m windows) 

 Standard deviation of depth (5, 10, 25, 50 m windows) 

 Mean depth (5, 10, 25, 50 m windows) 

Although ocean parameters are also important drivers of benthic community composition and 

structure (Brown et al 2011), relevant data was not available at spatial and temporal scales sufficient 

to make it worthwhile to include for the Oceanic Shoals. 

 

Developing training and test data 

Building predictive models is not possible without verified field data to document where biota of 

various types actually exist.  The data we use to build and test a given model (Figure 1 – steps 3 & 4) 

comes from AIMS underwater towed video 

(http://www.aims.gov.au/docs/research/monitoring/seabed/video-monitoring.html) surveys.  It 

includes both real-time coding of benthic communities from Go-Pro video footage and detailed 

analysis of downward facing still photos (Figure 3) taken along each of a series of 1.5 km long 

transects.  The former is adept at identifying benthic types like sponge communities that may have a 

minor profile on a downward facing image while still representing notable biomass.  The latter excel 

at identifying benthic types that do not protrude far into the water column (eg, burrowers, hard 

corals).  For a given field survey, the towed video transects are placed within the study area using a 

GRTS (Generalized Random Tesselation Stratified) sample design structured to spread transects across 

a priori classes of habitat complexity while ensuring they are evenly distributed spatially 

(https://science.nature.nps.gov/im/datamgmt/statistics/r/advanced/grts.cfm). 

http://www.aims.gov.au/docs/research/monitoring/seabed/video-monitoring.html
https://science.nature.nps.gov/im/datamgmt/statistics/r/advanced/grts.cfm


 

Figure 3.  The AIMS towed video system tow body with mounted video camera and down-ward facing camera for stills 

(lower), with an example of a still photo taken just above the sea floor (above). 

 

Ecologists at AIMS use the CATAMI classification scheme (http://catami.org/classification) to assign 

benthic categories to what they observe both in real-time via video and by analysing still photos in 

the lab. 

 

Building models and mapping habitats 

We then explore the statistical relationship between the predictors and field data of the presence / 

absence of benthic classes across the area of interest using a non-parametric statistical method - 

classification trees (Figure 1, step 5 – Breiman et al 1984).  For the Oceanic Shoals CMR model, we 

used an innovative version of this called random forest (Breiman 2001, Cutler et al 2007).  A random 

forest model first builds hundreds of classification trees that identify all the unique combinations of 

variable that could predict the distribution of a given class.  Those trees that are not useful in 

predicting that class cancel each other out.  This method outperforms standard classification trees 

http://catami.org/classification


that are defined a priori because it ensures that valid relationships in the data are not missed (Cutler 

et al 2007).   

In our process, we withhold a random sample of one-third of the field data to use for model 

performance estimates (testing set) and use two-thirds of it to establish how various benthic classes 

of organisms vary with the potential predictors (training set) to enable building a model.  When 

establishing the testing and training sets, we also test of spatial autocorrelation.  Where spatial 

autocorrelation exists, we retain a representative data point for each cluster of auto-correlated 

points.  After each model is built with the training data, we use the testing data to assess its 

performance (based on the AUC – ‘area under curve’ parameter in ROC analysis – Faucet 2006).  

Models whose AUC values are less than 0.7 are discarded, as is standard. 

Typically, we build a separate model for each class of benthos that predicts the likelihood that class 

exists (Figure 1, step 6) in each pixel across the study area from 0 (no chance it exists) to 1 (100% 

certainty that it exists).  Below is an example of this for sponges (Figure 4). 

 

Figure 4.  An example of a ‘probability map’ (Figure 1, step 6) of sponges for part of the Oceanic Shoals CMR at a 2 metre 

spatial resolution.  Sponge is most likely to exist in pixels shaded bright pink, and least likely to exist in pixels shaded 

turquoise. 

 

We then identify the probability at which errors in misclassifying pixels are balanced between 

incorrectly assuming the biota doesn’t exist (false negative or ‘misses’) and incorrectly assuming the 

biota does exist (false positives or false ‘hits’).  For each biota, we use this probability to simplify the 

data into two classes: 1 – where the biota might exist and 2 – where the biota is unlikely to exist.  

This creates a binary map for each class of biota (Figure 1, step 7).  We can then combine the binary 

maps for each class of biota to find out where different classes may co-exist in the same pixel, and 

where single ‘pure’ pixels of only one class of biota may exist.  This is the ‘mixed category map 

compilation’ in step 8 of Figure 1.  Below is an example for part of the Oceanic Shoals (Figure 5).  

Note that no pixels were predicted to contain Hard Coral or Gorgonians or Sponges except in 



combination with other classes.  In contrast, multiple ‘pure pixels’ were predicted for whips, Alcyons, 

Filterers and Burrowers. 

 

Figure 5.  An example of a ‘mixed category map compilation’ (Figure 1, step 7) for part of the Oceanic Shoals CMR at a 2 

metre spatial resolution.  Note that living organisms may exist in the ‘abiotic’ class, but were not detectable using survey 

methods.  White outlines within the CMR indicate recent zoning designations. 

 

We typically only retain mixed classes that cover at least 5% of the total area of the study area.  We 

will soon trial a method of assigning class names that names a mixed class based on the biota that is 

most likely to exist in that mix.  This can be extracted from the single class probability maps on a 

pixel by pixel basis. 

An alternative approach not shown in Figure 1 is to consider all benthic classes at once and task the 

model with identifying the most likely class to exist in each pixel.  This ‘most likely class’ approach is 

orders of magnitude faster computationally, and is particularly appropriate when you expect to see 

clear distinctions between where different benthic classes are likely to occur (that is, you don’t 

expect them to occur together that often).  The two approaches can produce very different results 

(Figure 6).  Where many classes are likely to exist together in a given location, the most likely class 

model will tend to predict a greater area where no biota is detected (longer grey bar to the left) 

while the mixed class model will predict a greater area of most biotic classes (longer coloured bars to 

the right). 

 



 

Figure 6.  Comparison of a ‘most likely class’ model (left) versus a ‘mixed class’ model for part of the Oceanic Shoals CMR at 

a 2m resolution.  The graph in the centre shows the % area difference between the two models for each of 7 classes.   

 

For our initial analysis of the Oceanic Shoals CMR, we aimed to identify the most likely of a set of 

benthic classes to exist in each 280 m pixel across the study area.  This is slightly coarser than the 

250 m pixel of the input bathymetry data – some resolution was lost due to the use of a kernel to 

generate some of the predictors and by projecting the data into flat map coordinates.  

 

Assessing map accuracy 

Once we’ve built a statistical model and used it to predict where a class or classes of biota occur 

across a study area, it is vital to estimate the accuracy of those predictions (Mumby & Harborne 

1999; Holmes at al., 2008; Gray 2001).  This is done using the testing data points we randomly 

withheld when building the model.  For each point, we know what actually exists there (the 

observed value), and we know what the model predicts should exist there (the predicted value).  

Plotting these by benthic class yields what is called a ‘confusion matrix’ (Figure 7).  In a confusion 

matrix, the number of data points where the observed class matches the predicted class is shown for 

each class in the boxes along the black diagonal.  All the other boxes in the diagram (that are not on 

the diagonal) indicate misclassification errors – essentially showing all the ways in which the model 

failed, broken down by class. For example, for the ‘hard coral’ row below, values in the boxes other 

than on the diagonal show the number of test data points where the benthic class was actually hard 

coral, but the model predicted something else (misses).  Most commonly this was either Alcyon or 

Abiotic (green shaded boxes).  For the ‘hard coral’ column, values in the non-diagonal boxes show 

the number of test data points where the model predicted hard coral, but the benthic class was 



actually something else (false hits).  Most commonly this was Alcyon (orange shaded box).  The 

relative proportion of false positives and misses given the sample size can be used to estimate 

overall accuracy of the classification.  

 

Figure 7.  Example of a confusion matrix for a most likely class model of part of the Oceanic Shoals.  The top two-thirds of 

the diagram show how well the observed (rows) versus predicted (columns) values at each of the testing data points 

matched for each of eight benthic classes.  The black diagonal line indicates the number of testing data points for each 

class where the predicted class matched what was observed (eg, the model was correct).  Each box not on the diagonal line 

indicates a misclassification error.     

 

Results  

We successfully modelled 10 benthic classes across the entire Oceanic Shoals CMR (Figure 7): 

1. Alcyons 

2. Gorgonians 

3. Soft corals 

4. Hard corals 

5. Halimeda 

6. Macroalgae 

7. Seagrasses 

8. Filterers 

9. Burrowers 

10. Abiotic 

 



 
 

Figure 7.  Spatial predictive model of the Oceanic Shoals Commonwealth Marine Reserve for ten classes of biota.  Note 

that living organisms may exist in the ‘abiotic’ class, but were not detectable using survey methods.  White outlines within 

the CMR indicate recent zoning designations. 

Across all classes, the model accuracy was high (82.97% total accuracy, 0.76 of 1 when adjusted for 

sample sizes to generate a Kappa statistic).  Despite this, examining the confusion matrix (Figure 8) 

shows that total accuracy estimates for four individual classes was poor.  These are abiotic, filter 

feeders, macroalgae and seagrasses.  Data points that were actually abiotic were most often 

mistakenly predicted to be whips. Those that were actually filter feeders were most often mistakenly 

predicted to be sponges.  Those that were actually macroalgae were most often mistakenly 

predicted to be Halimeda.  Those that were actually seagrass were most often mistakenly predicted 

to be filter feeders.  The above should be kept in mind when using these data. 

 



 

Figure 8.  Confusion matrix of the ‘most likely class’ model of benthic classes across the entire Oceanic Shoals CMR.  Note 

that living organisms may exist in the ‘abiotic’ class, but were not detectable using survey methods.  Red x’s denote classes 

with unacceptable classification accuracy (less than 75%). 

 

 

Although the estimated accuracy of the ‘most likely class’ model for the Oceanic Shoals CMR was 

high, it is important to realise that the training and testing observed data points were not evenly 

distributed across the study area (Figure 9). 



 

Figure 9.  Field data for model building and testing (black dots) beyond and within the Oceanic Shoals CMR. 

 

This means that it is possible that model quality may be lower in areas far from testing and training 

data points if the relationship between the benthic classes and the predictor variables is not uniform 

across the CMR.  The extent to which this is the case can only be determined by collecting additional 

field data. 

 

Also important is to consider the spatial scale at which we were able to model the Oceanic Shoals 

CMR.  Due to vast size of the CMR, fine scale bathymetry was too sparse to build a high resolution 

bathymetric model of the study area.  The most detailed dataset covering the entire study area was 

at a spatial resolution of 250 m.  Comparing this for selected areas where fine scale existed (and for 

which high resolution models were built) illustrates the implications of using the coarser scale 

bathymetry data (Figure 10). 



 

Figure 10.  Comparison of fine scale versus coarse scale habitat ‘most likely class’ model results for a small section of the 

Oceanic Shoals CMR. 

 

Most notably, the coarse-scale data not only predicts a different relative proportion of the class 

types, but misses entire features evident in the fine-scale data.  The coarse-scale model is still useful, 

but the implications of using it need to be kept in mind.  In particular, if designing a monitoring 

program based on it, you’ll need to make an array of observations within a given 280 by 280 metre 

pixel classified as ‘sponge’, for example, to ensure that at least one of those observations contains 

sponge. 

 

Recommendations 

 This coarse-scale habitat map of the entire Oceanic Shoals should be used to target future 

field surveys in areas of particular interest where validation data is currently missing to 

collect additional field data.  This will enable the development of fine scale habitat models of 

higher quality. 

 

 Mixed class models should be developed for this region as many of the benthic classes are 

likely to co-occur.  The current ‘most likely class’ model may underestimate the spatial 

prevalence of some benthic classes that may exist in mixed assemblages. 

 

 Decisions about poorly modelled habitat types (abiotic, filter feeders, macroalgae and 

seagrasses) should be made with care, and should consider how the model typically 

misclassified these types, as shown in the confusion matrix. 



 

 Single class probability models of benthic classes of particular interest (hard coral?) may be 

of interest to stakeholders for particular applications and can be developed. 

 

 A more detailed analysis of the ecological processes driving the spatial distribution of 

different habitat types would help to understand the risks posed by various stressors, and 

aid in the development of appropriate monitoring strategies.  
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